辰野客资源整合网

您现在的位置是:首页 > 资讯中心 > 生活百科

生活百科

分数的历史(分数的历史)

2023-08-13 15:29:43生活百科10
分数的历史和由来是什么?分数的由来: 分数的历史,得从三千多年前的埃及说起。 三千多年前,古埃及为了在不能分得整数的情况下表示数,用特殊符号表示分子为1的分数。两千多年前,中国有了分数,但是,秦汉时期的分数的表现形式不一样,印度出现了和我国相似的分数表示法,再往后,阿拉...
分数的历史和由来是什么?

分数的由来:

分数的历史,得从三千多年前的埃及说起。

三千多年前,古埃及为了在不能分得整数的情况下表示数,用特殊符号表示分子为1的分数。两千多年前,中国有了分数,但是,秦汉时期的分数的表现形式不一样,印度出现了和我国相似的分数表示法,再往后,阿拉伯人发明了分数线,今天分数的表示法就由此而来。

分数计算方法:

1、分数约分的步骤方法:

(1)将分子分母分解因数。

(2)找出分子分母公因数。

(3)消去非零公因数。

2、分数的乘法运算:

(1)分数乘整数,分母不变,分子乘整数,最后能约分的要约分。

(2)分数乘分数,用分子乘分子,用分母乘分母,最后能约分的要约分。

分数的历史

在历史上,分数几乎与自然数一样古老.早在人类文化发明的初期,由于进行测量和均分的需要,引入并使用了分数.

在许多民族的古代文献中都有关于分数的记载和各种不同的分数制度.早在公元前2100多年,古代巴比伦人(现处伊拉克一带)就使用了分母是60的分数.

公元前1850年左右的埃及算学文献中,也开始使用分数.

我国春秋时代(公元前770年~前476年)的《左传》中,规定了诸侯的都城大小:最大不可超过周文王国都的三分之一,中等的不可超过五分之一,小的不可超过九分之一.秦始皇时代的历法规定:一年的天数为三百六十五又四分之一.这说明:分数在我国很早就出现了,并且用于社会生产和生活.

你知道分数有怎样的发展历史吗?

当人们需要划分某些东西,或者事物的时候,就会用到分数。我国春秋时代(公元前770年~前476年)的《左传》中,规定了诸侯的都城大小:最大不可超过周文王国都的三分之一,中等的不可超过五分之一,小的不可超过九分之一。

秦始皇时代的历法规定:一年的天数为三百六十五又四分之一。这说明:分数在我国很早就出现了,并且用于社会生产和生活。人类历史上最早产生的数是自然数(非负整数),以后在度量和平均分时往往不能正好得到整数的结果,这样就产生了分数。

由来

说分数的历史,得从三千多年前的埃及说起。

三千多年前,古埃及为了在不能分得整数的情况下表示数,用特殊符号表示分子为1的分数。两千多年前,中国有了分数,但是,秦汉时期的分数的表现形式不一样。印度出现了和我国相似的分数表示法。再往后,阿拉伯人发明了分数线,今天分数的表示法就由此而来。

分数有什么历史?

分数是把一个单位分成若干等份,表示其中的一份或几份的数。

是除法的一种书写形式,如(读作五分之二),(读作二又七分之三)。在分数中,符号‘─’叫做分数线,相当于除号;分数线上面的数叫做分子,相当于被除数,如中的2;分数线下面的数叫做分母,相当于除数,如中的5。

历史:

最早的分数是整数倒数:代表二分之一的古代符号,三分之一,四分之一,等等。埃及人使用埃及分数c。 1000 bc。大约4000年前,埃及人用分数略有不同的方法分开。他们使用最小公倍数与单位分数。他们的方法给出了与现代方法相同的答案。埃及人对于Akhmim木片和二代数学纸莎草的问题也有不同的表示法。

希腊人使用单位分数和(后)持续分数。希腊哲学家毕达哥拉斯(c。530 bc)的追随者发现,两个平方根不能表示为整数的一部分。 (通常这可能是错误的归因于Metapontum的Hippasus,据说他已被处决以揭示这一事实)。

在印度的150名印度人中,耆那教数学家写了“Sthananga Sutra”,其中包含数字理论,算术学操作和操作。

分数的历史

分数的历史

分数的产生

人类历史上最早产生的数是自然数(正整数),以后在度量和均分时往往不能正好得到整数的结果,这样就产生了分数。

用一个作标准的量(度量单位)去度量另一个量,只有当量若干次正好量尽的时候,才可以用一个整数来表示度量的结果。如果量若干次不能正好量尽,有两种情况:

例如,用b作标准去量a:

一种情况是把b分成n等份,用其中的一份作为新的度量单位去度量a,量m次正好量尽,就表示a含有把b分成n等份以后的m个等份。例如,把b分成4等份,用其中的一份去量a,量9次正好量尽.在这种情况下,不能用一个整数表示用b去度量a的结果,就必须引进一种新的数--分数来表示度量的结果。

另一种情况是无论把b分成几等份,用其中的一份作为新的度量a,都不能恰好量尽(如用圆的直径去量同一圆的周长)。在这种情况下,就需要引进一种新的数-无理数。在整数除法中,两个数相除,有时不能得到整数商。为了使除法运算总可以施行,也需要引进新的一种数-分数。

综上所述,分数是在实际度量和均分中产生的

分数的历史

在历史上,分数几乎与自然数一样古老。早在人类文化发明的初期,由于进行测量和均分的需要,引入并使用了分数。

外国

在许多民族的古代文献中都有关于分数的记载和各种不同的分数制度。早在公元前2100多年,古代巴比伦人(现处伊拉克一带)就使用了分母是60的分数。 公元前1850年左右的埃及算学文献中,也开始使用分数,不过那时候古埃及的分数只是分数单位。

中国

我国春秋时代(公元前770年~前476年)的《左传》中,规定了诸侯的都城大小:最大不可超过周文王国都的三分之一,中等的不可超过五分之一,小的不可超过九分之一。秦始皇时代的历法规定:一年的天数为三百六十五又四分之一。这说明:分数在我国很早就出现了,并且用于社会生产和生活。

分数和发展历史

把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数.表示这样的一份的数叫分数单位.在历史上,分数几乎与自然数一样古老.早在人类文化发明的初期,由于进行测量和均分的需要,引入并使用了分数.在,外国在许多民族的古代文献中都有关于分数的记载和各种不同的分数制度.早在公元前2100多年,古代巴比伦人(现处伊拉克一带)就使用了分母是60的分数.公元前1850年左右的埃及算学文献中,也开始使用分数,不过那时候古埃及的分数只是分数单位.我国春秋时代(公元前770年~前476年)的《左传》中,规定了诸侯的都城大小:最大不可超过周文王国都的三分之一,中等的不可超过五分之一,小的不可超过九分之一.秦始皇时代的历法规定:一年的天数为三百六十五又四分之一.这说明:分数在我国很早就出现了,并且用于社会生产和生活.。

分数的发展历史

算筹是中国古代的计算工具,真正意义上的中国古代数学体系形成于自西汉至南北朝的三、四百年期间。

《算数书》成书于西汉初年,是传世的中国最早的数学专著,它是1984年由考古学家在湖北江陵张家山出土的汉代竹简中发现的。《周髀算经》编纂于西汉末年,它虽然是一本关于“盖天说”的天文学著作,但是包括两项数学成就——(1)勾股定理的特例或普遍形式(“若求邪至日者,以日下为句,日高为股,句股各自乘,并而开方除之,得邪至日。”

——这是中国最早关于勾股定理的书面记载);(2)测太阳高或远的“陈子测日法”。 《九章算术》在中国古代数学发展过程中占有非常重要的地位。

它经过许多人整理而成,大约成书于东汉时期。全书共收集了246个数学问题并且提供其解法,主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等。

在代数方面,《九章算术》在世界数学史上最早提出负数概念及正负数加减法法则;现在中学讲授的线性方程组的解法和《九章算术》介绍的方法大体相同。注重实际应用是《九章算术》的一个显著特点。

该书的一些知识还传播至印度和 *** ,甚至经过这些地区远至欧洲。 九章算术》标志以筹算为基础的中国古代数学体系的正式形成。

中国古代数学在三国及两晋时期侧重于理论研究,其中以赵爽与刘徽为主要代表人物。 赵爽学术成就体现于对《周髀算经》的阐释。

在《勾股圆方图注》中,他还用几何方法证明了勾股定理,其实这已经体现“割补原理”的方法。用几何方法求解二次方程也是赵爽对中国古代数学的一大贡献。

三国时期魏人刘徽则注释了《九章算术》,其著作《九章算术注》不仅对《九章算术》的方法、公式和定理进行一般的解释和推导,而且系统地阐述了中国传统数学的理论体系与数学原理,并且多有创造。其发明的“割圆术”(圆内接正多边形面积无限逼近圆面积),为圆周率的计算奠定了基础,同时刘徽还算出圆周率的近似值——“3927/1250(3.1416)”。

他设计的“牟合方盖”的几何模型为后人寻求球体积公式打下重要基础。在研究多面体体积过程中,刘徽运用极限方法证明了“阳马术”。

另外,《海岛算经》也是刘徽编撰的一部数学论著。 南北朝是中国古代数学的蓬勃发展时期,计有《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作问世。

祖冲之、祖暅父子的工作在这一时期最具代表性。他们着重进行数学思维和数学推理,在前人刘徽《九章算术注》的基础上前进了一步。

根据史料记载,其著作《缀术》(已失传)取得如下成就:①圆周率精确到小数点后第六位,得到3.1415926

隋唐时期的主要成就在于建立中国数学教育制度,这大概主要与国子监设立算学馆及科举制度有关。在当时的算学馆《算经十书》成为专用教材对学生讲授。

《算经十书》收集了《周髀算经》、《九章算术》、《海岛算经》等10部数学著作。所以当时的数学教育制度对继承古代数学经典是有积极意义的。

公元600年,隋代刘焯在制订《皇极历》时,在世界上最早提出了等间距二次内插公式;唐代僧一行在其《大衍历》中将其发展为不等间距二次内插公式。 从公元11世纪到14世纪的宋、元时期,是以筹算为主要内容的中国古代数学的鼎盛时期,其表现是这一时期涌现许多杰出的数学家和数学著作。

中国古代数学以宋、元数学为最高境界。在世界范围内宋、元数学也几乎是与 *** 数学一道居于领先集团的。

贾宪在《黄帝九章算法细草》中提出开任意高次幂的“增乘开方法”,同样的方法至1819年才由英国人霍纳发现;贾宪的二项式定理系数表与17世纪欧洲出现的“巴斯加三角”是类似的。遗憾的是贾宪的《黄帝九章算法细草》书稿已佚。

秦九韶是南宋时期杰出的数学家。1247年,他在《数书九章》中将“增乘开方法”加以推广,论述了高次方程的数值解法,并且例举20多个取材于实践的高次方程的解法(最高为十次方程)。

16世纪意大利人菲尔洛才提出三次方程的解法。另外,秦九韶还对一次同余式理论进行过研究。

李冶于1248年发表《测圆海镜》,该书是首部系统论述“天元术”(一元高次方程)的著作,在数学史上具有里程碑意义。尤其难得的是,在此书的序言中,李冶公开批判轻视科学实践活动,将数学贬为“贱技”、“玩物”等长期存在的士风谬论。

公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和。公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法。

公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式。

小数的历史

小数是我国最早提出和使用的.早在一千七百多年前,我国古代数学家刘微(生于公元三世纪,山东人,中国古代伟大的数学家.世界上最早提出十进小数概念的人.他的杰作《九章算术注》和《海岛算经》是我国最宝贵的数学遗产.)在解决一个数学难题时就提出了把整个位以下无法标出名称的部分称为微数.古代,我国用小棒表示数.刘微最初,人们表示小数只是用文字.到了公元十三世纪,我国元代数字家朱世杰提出了小数的名称,同时出现了低一格表示小数的记法.例如:64.12 ┻。

_|| 这是世界上最早的小数表示方法.这种记法后来传到了中亚和欧洲.后来,又有人将小数部分的各个数字用圆圈圈起来,这么一圈,就把整数部分和小数部分分开了.有了 *** 数字后,先后出现了像这样表示小数的方法.64.12 64 64 12 12在西方,小数出现很晚.直到十六世纪,法国数学家克拉维斯用小圆点“.”表示小数点,确定了现在表示小数的形式;不过还有一部分国家是用逗号“,”表示小数点的.例如: 64.12 64,12。

分数的含义是什么

分数单位 把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。

表示这样的一份的数叫分数单位定义 把单位"1"平均分成若干份,表示这样的一份或几份的数叫做分数。分母表示把一个物体平均分成几份,分子表示取了其中的几份。

1 →分子—→分数线2 →分母分数中间的一条横线叫做分数线,分数线上面的数叫做分子,分数线下面的数叫做分母。起源 分数在我们中国很早就有了,最初分数的表现形式跟现在不一样。

后来,印度出现了和我国相似的分数表示法。再往后, *** 人发明了分数线,分数的表示法就成为现在这样了。

产生人类历史上最早产生的数是自然数(正整数),以后在度量和均分时往往不能正好得到整数的结果,这样就产生了分数。分类分数一般包括:真分数,假分数,带分数.真分数小于1.假分数大于1,或者等于1.带分数大于1而又是最简分数.带分数是由一个整数和一个真分数组成的。

注意①分母和分子中不能有0,否则无意义。②分数中不能出现无理数(如2的平方根),否则就不是分数。

产生 人类历史上最早产生的数是自然数(正整数),以后在度量和均分时往往不能正好得到整数的结果,这样就产生了分数。③判断一个分数是否能变成有限小数:一、先要看它是不是最简分数。

二、如果分母是2或5的倍数(不含其他任何数),就能变成有限小数历史在历史上,分数几乎与自然数一样古老。早在人类文化发明的初期,由于进行测量和均分的需要,引入并使用了分数。

在许多民族的古代文献中都有关于分数的记载和各种不同的分数制度。早在公元前2100多年,古代巴比伦人(现处伊拉克一带)就使用了分母是60的分数。

公元前1850年左右的埃及算学文献中,也开始使用分数。我国春秋时代(公元前770年~前476年)的《左传》中,规定了诸侯的都城大小:最大不可超过周文王国都的三分之一,中等的不可超过五分之一,小的不可超过九分之一。

秦始皇时代的历法规定:一年的天数为三百六十五又四分之一。这说明:分数在我国很早就出现了,并且用于社会生产和生活。

意义一个物体,一个图形,一个计量单位,都可看作单位“1”。把单位“1”平均分成几份,表示这样一份或几份的数叫做分数。

在分数里,表示把单位“1”平均分成多少份的叫做分母,表示有这样多少份的叫做分子;其中的一份叫做分数单位。

【历史上所创造的分数符号有哪些】

1、公元三世纪,古代中国的分数记数法,分别有两种,其中一种是汉字记法,与现在的汉字记数法一样 :「…分之…」;而另一种是筹算记法: 用筹算来计算除法时,当中的「商」在上,「实」(即被除数)列在中间,而「法」(即除数)在下,完成整 个除法时,中间的实可能会有馀数.2、古希腊人用L"表示 ,例如:αL"=1, βL"=2,及 γL"=3等,至於在数字的右上角加一撇点「 '」,便表示该数分之一.3、在公元12世纪, *** 人海塞尔最先采用分数线.他以来表示.而斐波那契是最早把分数线引入欧洲的人.至15世纪后, 才被逐渐形成现代的分数算法.在1530年,德国人鲁多尔夫在计算 的时候,以计算得 ,到后来才逐渐的采用现在的分数形式. 4、1845年,德摩根在他的一篇文章「函数计算」( The Calculus of Functions)中提出以斜线「/」来表示 分数线.由于把分数以a/b来表示,有利於印刷排版,故现在有些印刷书籍也有采用这种 斜线「/」分数符号.。

分数的发展历史

一.分数发展简史

人类早在文化发展的初期,由于进行测量和均分,就曾使用分数。在各民族的最早古文献中,都有关于分数的记载;各民族还有各不相同的分数制度。

埃及人:只对分子是1的分数进行运算,他们编制了把分子不是1的分数化成分子是1的分数的和的表,例如:

221 =114 + 142 215 =110 + 130 213 =18 + 152 +1104

在巴比伦:由于创造了六十进制的计数制度,所以他们就利用分母是60、602、、603等的分数,巴比伦人还编制了用六十进位的分数来表示分子是1的分数的表,例如: 154 =160 +6602 + 40603

希腊人:学会了埃及的分数算法和巴比伦的六十进位制算法,加、减、乘、除都很困难,数字计算没有能够很好发展。

我国古代筹算除法,除数放在被除数下面,除得的商放在被除数的上面,例如:

23÷7筹算法记着: ,除得整数3余数是2后,改作: ,中

间的2叫做分子,下面的7叫做分母,这个带分数读作:“三又七分之二”。

根据先有的材料,我国古代数学书“九章算术”(约公元一世纪左右)里面,已有完整的分数四则运算的法则,这在世界来说也是最早的。

“九章算术”把分数加法叫做“合分”,法则是“母互乘子,并以为实,母相乘为法,实如法而一”,即:ba + dc = bc+adac 。这里的“实”是被除数,也就是分子,“法”是除数,也就是分母;“实如法而一”是被除数依除数均分为几份而取它的一份。如果同分母分数相加,则有法则“其母同者直相从之“,即 ba + ca = b+ca 。

“九章算术”把分数减法叫做“减分”,法则是“母互乘子,以多减少,余为实,母相乘为法,实如法而一”。即: ba - dc = bc-adac 。

“九章算术”把分数乘法叫做“乘分”,法则是“母相乘为法,子相乘为实,实如法而一”。即: ba × dc = bdac

“九章算术”把分数除法叫做“经分”,法则是“法分母乘实(为实),实分母乘法(为法),实如法而一”。即:ba ÷ dc = bcad

这些法则和我们现在所用几乎完全一样。

“九章算术”里约分法则是“可半者半之,副置分母、子之数,以少减多,更相减损,求其等也,以等数约之”,这就是说:分子、分母都是偶数的时候,应该用2除;如果不是偶数,那么用辗转相减的方法,从较大数减去较小的数,最后得到一个余数和减数相等,这就是所求的最大公约数,这种辗转向减求最大公约数的方法和欧几里得的辗转相除法,理论上是一致的。

印度的数学计算都用比写的方法,七世纪中期,在印度数学家拉莫古浦

2

塔的著作中,分数七分之二记作:7 (只是比现在的分数少了分数线),分数三又

3

2

七分之二记作:7 ,和我国的筹算记法体制相同,分数的加、减、乘、除的法则也都和我国筹算法相同。

阿拉伯人接受了印度的分数记法,但是在分子、分母中间添上一条横线,并且把带分数的整数部分写在分数的前面,例如三又七分之二写成3 27 。

阿拉伯人的分数算法在十三世纪初传到了意大利,在十五世纪中开始在欧洲各国通行,现在已经在全世界通用了


TAG:
热门标签: 外国语(1) 打螺丝(1) 暑假(1) 交界(1) 朱柔则(1)

部分信息与图片素材来源于互联网,如内容侵权与违规,请与本站联系,将立即处理,举报邮箱:1356571586@qq.com


随机关键词:

资源联系人